Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.08.04.551973

ABSTRACT

SARS-CoV-2 has been proposed to encode ORF10 as the 3' terminal gene in the viral genome. However, the potential role and even existence of a functional ORF10 product has been the subject of debate. There are significant structural features in the viral genomic RNA that could, by themselves, explain the retention of the ORF10 nucleotide sequences without the need for a functional protein product. To explore this question further we made two recombinant viruses, firstly a control virus (WT) based on the genome sequence of the original Wuhan isolate and with the inclusion of the early D614G mutation in the Spike protein. We also made a second virus, identical to WT except for two additional changes that replaced the initiating ORF10 start codon and an internal methionine codon for stop codons (ORF10KO). Here we show that the two viruses have apparently identical growth kinetics in a VeroE6 cell line that over expresses TMPRSS2 (VTN cells). However, in A549 cells over expressing ACE2 and TMPRSS2 (A549-AT cells) the ORF10KO virus appears to have a small growth rate advantage. Growth competition experiments were used whereby the two viruses were mixed, passaged in either VTN or A549-AT cells and the resulting output virus was sequenced. We found that in VTN cells the WT virus quickly dominated whereas in the A549-AT cells the ORF10KO virus dominated. We then used a hamster model of SARS-CoV-2 infection and determined that the ORF10KO virus has attenuated pathogenicity (as measured by weight loss). We found an almost 10-fold reduction in viral titre in the lower respiratory tract for ORF10KO vs WT. In contrast, the WT and ORF10KO viruses had similar titres in the upper respiratory tract. Sequencing of viral RNA in the lungs of hamsters infected with ORF10KO virus revealed that this virus frequently reverts to WT. Our data suggests that the retention of a functional ORF10 sequence is highly desirable for SARS-CoV-2 infection of hamsters and affects the virus's ability to propagate in the lower respiratory tract.


Subject(s)
COVID-19 , Weight Loss
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.26.474085

ABSTRACT

COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2. The B.1.1.529 Omicron variant is rapidly emerging and has been designated a Variant of Concern (VOC). The variant is highly transmissible and partially or fully evades a spectrum of neutralising antibodies due to a high number of substitutions in the spike glycoprotein. A major question is the relative severity of disease caused by the Omicron variant compared with previous and currently circulating variants of SARS-CoV-2. To address this, a mouse model of infection that recapitulates severe disease in humans, K18-hACE2 mice, were infected with either a Pango B, Delta or Omicron variant of SARS-CoV-2 and their relative pathogenesis compared. In contrast to mice infected with Pango B and Delta variant viruses, those infected with the Omicron variant had less severe clinical signs (weight loss), showed recovery and had a lower virus load in both the lower and upper respiratory tract. This is also reflected by less extensive inflammatory processes in the lungs. Although T cell epitopes may be conserved, the antigenic diversity of Omicron from previous variants would suggest that a change in vaccine may be required to mitigate against the higher transmissibility and global disease burden. However, the lead time to develop such a response may be too late to mitigate the spread and effects of Omicron. These animal model data suggest the clinical consequences of infection with the Omicron variant may be less severe but the higher transmissibility could still place huge burden upon healthcare systems even if a lower proportion of infected patients are hospitalised.


Subject(s)
Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL